High resolution snow distribution data from complex Arctic terrain: a tool for model validation

نویسنده

  • A. D. Sandvik
چکیده

Blowing snow and snow drifts are common features in the Arctic. Due to sparse vegetation, low temperatures and high wind speeds, the snow is constantly moving. This causes severe problems for transportation and infrastructure in the affected areas. To minimise the effect of drifting snow already in the designing phase of new structures, adequate models have to be developed and tested. In this study, snow distribution in Arctic topography is surveyed in two study areas during the spring of 1999 and 2000. Snow depth is measured by ground penetrating radar and manual methods. The study areas encompass four by four kilometres and are partly glaciated. The results of the surveys show a clear pattern of erosion, accumulation areas and the evolution of the snow cover over time. This high resolution data set is valuable for the validation of numerical models. A simple numerical snow drift model was used to simulate the measured snow distribution in one of the areas for the winter of 1998/1999. The model is a two-level drift model coupled to the wind field, generated by a mesoscale meteorological model. The simulations are based on five wind fields from the dominating wind directions. The model produces a satisfying snow distribution but fails to reproduce the details of the observed snow cover. The results clearly demonstrate the importance of quality field data to detect and analyse errors in numerical simulations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A physiographic approach to downscaling fractional snow cover data in mountainous regions

a r t i c l e i n f o Keywords: Fractional snow covered area Snow covered extent Downscaling Topography Hillslope scale Landsat NDSI Digital elevation models Snow remote sensing Watershed hydrology Accurate characterization of snow-covered area (SCA) and snow water equivalent (SWE) in complex terrain is needed to improve estimation of streamflow timing and volume, and is important for land surf...

متن کامل

شبیه سازی سطح پوشش برف و رواناب ناشی از ذوب آن در حوزه ‌آبخیز هرو - دهنو در استان لرستان

Given the importance of snow, it seems necessary to predict its resultant runoff for optimized usage. In addition, due to snowbound regions cloudiness in winter season, the notice of snow cover area (SCA) using satellite images is difficult. Hence, to help better water resources managing in mountainous areas using supplementary methods for simulating the SCA is necessary. As a case study, Horo-...

متن کامل

Distribution and Validation of Cloud Cover Derived from AVHRR Data Over the Arctic Ocean During the SHEBA Year

Determination of cloud radiation interactions over large areas of the Arctic is possible only with the use of data from polar orbiting satellites. Cloud detection using satellite data is difficult in the Arctic due to the minimal contrast between clouds and the underlying snow surface in visible and infrared wavelengths. Polar clouds are frequently warmer or at the same brightness temperature a...

متن کامل

Application of Low-Cost UASs and Digital Photogrammetry for High-Resolution Snow Depth Mapping in the Arctic

The repeat acquisition of high-resolution snow depth measurements has important research and civil applications in the Arctic. Currently the surveying methods for capturing the high spatial and temporal variability of the snowpack are expensive, in particular for small areal extents. An alternative methodology based on Unmanned Aerial Systems (UASs) and digital photogrammetry was tested over va...

متن کامل

Scaling Precipitation Input to Spatially Distributed Hydrological Models by Measured Snow Distribution

Accurate knowledge on snow distribution in alpine terrain is crucial for various applications such as flood risk assessment, avalanche warning or managing water supply and hydro-power. To simulate the seasonal snow cover development in alpine terrain, the spatially distributed, physics-based model Alpine3D is suitable. The model is typically driven by spatial interpolations of observations from...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001